Colles de Maths - semaine 5 - MP*2 Lycée du Parc

Julien Allasia - ENS de Lyon

Généralités de topologie

Exercice 1 (*) Soit E un espace vectoriel normé (ou métrique). Soit D une partie dense de E. Soit $f: D \to \mathbb{R}$ une application continue qui admet un prolongement continu à $D \cup \{x\}$ pour tout $x \in E$. Montre que f admet un prolongement continu sur E.

Exercice 2 (*) Soit E un espace vectoriel normé (ou un espace métrique). Soit A et B deux parties non vides disjointes de E. On définit la distance de A à B par

$$d(A,B) = \inf_{(x,y)\in A\times B} d(x,y).$$

- 1. On suppose A fermé. A-t-on d(A, B) > 0? Et si l'on suppose B fermé? réduit à un point?
- 2. Si A et B sont fermés, montrer qu'il existe deux ouverts disjoints U et V tels que $A \subseteq U$ et $B \subseteq V$.

Exercice 3 (*) Soit E l'espace des fonctions continues de [0,1] dans \mathbb{R} muni de $||.||_{\infty}$ et

$$F = \left\{ f \in E, \ f(0) = f(1) = 0 \text{ et } \int_0^1 f = 1 \right\}.$$

Montrer que F est fermé mais que la distance de 0 à F n'est pas atteinte.

Applications linéaires continues

Exercice 4 (*) On considère l'espace vectoriel normé $E = (\mathcal{C}^0([-1,1],\mathbb{R}),||.||_{\infty})$, et l'application f définie pour $x \in E$, par

$$f(x) = \int_0^1 x - \int_{-1}^0 x.$$

Montrer que f est linéaire continue et déterminer sa norme subordonnée. Est-elle atteinte, c'est-à-dire existe-t-il $a \in E \setminus \{0\}$ tel que |f(a)| = ||f|| ||a||?

Exercice 5 (*) On considère l'espace vectoriel normé $E = (\mathcal{C}^0([0,1],\mathbb{R}),||.||_1)$.

- 1. Soit $g \in E$. Montrer que l'application $\phi_g : f \in E \mapsto \int_0^1 g(t) f(t) dt$ est une forme linéaire continue sur E et calculer sa norme subordonnée.
- 2. Qu'en est-il si l'on considère la fonction $g(t) = \frac{1}{\sqrt{t}} \in L^1(]0,1])$?

Topologie de \mathbb{R}

Exercice 6 (**)

- 1. Déterminer, selon $\alpha \in \mathbb{R}$, l'ensemble des valeurs d'adhérence de la suite $(e^{i\alpha n})_{n\in\mathbb{N}}$.
- 2. En déduire l'ensemble des valeurs d'adhérence de la suite $(\sin n)_{n>0}$.

On pourra admettre que si $\alpha \notin \beta \mathbb{Q}$, alors $\alpha \mathbb{N} + \beta \mathbb{Z}$ est dense dans \mathbb{R} .